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A B S T R A C T   

Background: Valid comparisons of muscle strength between individuals or legs that differ in size requires 
normalization, often by simple anthropometric variables. Few studies of muscle strength in lower-limb prosthesis 
users have normalized strength data by any anthropometric variable, potentially confounding our understanding 
of strength deficits in lower-limb prosthesis users. The objective of this pilot study was to determine the need for 
as well as effectiveness and impact of normalizing hip strength in lower-limb prosthesis users. 
Methods: Peak isometric hip extension and abduction torques were collected from 28 lower-limb prosthesis users. 
Allometric scaling was used to determine if hip torque values were significantly associated with, and therefore 
needed to be adjusted for, body mass, thigh length, or body mass x thigh length, and whether normalization was 
effective in reducing any associations. Between limb differences in peak hip torque, and correlations with bal
ance ability, were inspected pre- and post-normalization. 
Findings: Hip torques were consistently and significantly associated with body-mass x thigh length. Associations 
between peak hip torque and body-mass x thigh length were reduced by normalization. After normalization by 
body-mass x thigh length, between limb differences in hip extension torque, as well as the correlation between 
hip abduction torque and balance ability, changed from non-significant to significant. 
Interpretation: In the absence of normalization, hip strength (i.e., peak torque) in lower-limb prosthesis users 
remains dependent on basic anthropometric variables, masking relationships between hip strength and balance 
ability, as well as between limb differences.   

1. Introduction 

Normalization of muscle function data is uncommon in lower-limb 
prosthesis (LLP) user research (Hewson et al., 2020), potentially 
causing the field to misinterpret patterns of muscle weakness, and 
overlook important relationships between the varied aspects of muscle 
function (i.e., muscle strength, power, or endurance) (Beaudart et al., 
2019), and walking or balance ability. Valid comparisons of muscle 
function between individuals or legs that differ in size requires 
normalization (Bazett-Jones et al., 2011; Folland et al., 2008; Hurd 
et al., 2011). Normalization can be achieved by scaling measures of 
muscle function to one or a combination of simple anthropometric 
variables like body mass, height, or segment length, which serve as 
proxy measures for factors known to positively influence the generation 

of muscle force or torque (e.g., muscle mass, muscle moment arm 
length) (Hurd et al., 2011; Jaric, 2002; Jaric, 2003). A recent review of 
muscle function in LLP users (Hewson et al., 2020) however, found that 
less than a third of published studies normalized muscle strength data (i. 
e., peak torque) by any anthropometric variable. As a result, reported 
differences in strength, or the lack thereof, between individuals and/or 
legs may be confounded by differences in body size. Studies that did 
normalize peak torque, did so using body mass alone (Crozara et al., 
2019; Heitzmann et al., 2020; Kowal and Rutkowska-Kucharska, 2014; 
Lloyd et al., 2010; Rutkowska-Kucharska et al., 2018; Sibley et al., 2021; 
Slater et al., 2021), a choice likely attributable to the popular view that 
larger individuals possess more muscle mass and are therefore stronger 
than smaller individuals (Jaric, 2002). Increases in body mass however, 
are not universally associated with increases in muscle mass and the 
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ability to generate greater muscle force or torque (Folland et al., 2008). 
Further, there is no evidence to suggest that the normalization of muscle 
function data in LLP users by body mass, or any other anthropometric 
variable, is required or effective in establishing anthropometric- 
independent measures of muscle function that are suitable for compar
ison between individuals or legs that differ in size. The limited appli
cation of normalization to muscle function data in LLP user research, 
coupled with the lack of evidence to guide the selection of effective 
normalization procedures, limits the analysis and understanding of im
pairments in muscle function, as well as their impact on LLP users' 
physical function. 

The objective of this pilot study was therefore to address three 
questions. First, is normalization of muscle strength data (i.e., peak 
torque) required in LLP users (i.e., is muscle strength significantly 
associated with common anthropometric variables)? Second, is 
normalization effective (i.e., does it return strength measures that are 
independent of anthropometric variables)? And third, does normaliza
tion alter the interpretation of strength data in LLP users? Answers to 
these questions were sought by analyzing peak torque data from two 
muscle groups central to LLP users' physical function, the hip abductors 
and extensors. 

2. Methods 

2.1. Study design 

A cross-sectional pilot study was conducted to determine the need 
for, as well as effectiveness and impact of, normalizing maximum 
voluntary isometric hip peak torque by conventional anthropometric 
variables in established unilateral LLP users. Study protocols were 
reviewed and approved by an institutional review board at the Univer
sity of Illinois at Chicago. All individuals gave written informed consent 
before participating. 

2.2. Participant recruitment 

Individuals with a unilateral transtibial or transfemoral amputation 
due to trauma, dysvascular complications, cancer, or infection were 
recruited from prosthetic clinics in Chicago using convenience sampling. 
To participate, individuals were required to be 18 years of age or older; 
have a history of wearing a prosthesis for at least two years post 
amputation; be able to walk 10 m without the use of a cane or walker; 
and be able to read, write, and speak English. Participants were excluded 
if they had a second amputation, contralateral complications, or a 
neuromusculoskeletal or cardiopulmonary condition (e.g., Chronic 
Obstructive Pulmonary Disease) that would preclude them from 
completing testing procedures. 

2.3. Data collection 

2.3.1. Participant characterization 
Participant age and sex were collected via self-report, while ampu

tation characteristics (e.g., etiology) Medicare Functional Classification 
Level (MFCL), or K-level (Palmento Government Benefits Administra
tors, 1994), and hours of prosthesis use per day were determined via 
interview by a certified prosthetist. Perceived mobility was assessed 
with the Prosthetic Limb Users Survey – Mobility (PLUS-M) (Hafner 
et al., 2017), while balance ability and number of co-morbidities were 
characterized by distance walked on the Narrowing Beam Walking Test 
(NBWT) (Sawers and Hafner, 2018a), and the Charlson Comorbidity 
Index (CCI) (Chaudhry et al., 2005), respectively. The NBWT was chosen 
for its challenge to lateral balance control (Sawers and Hafner, 2018a; 
Sawers and Ting, 2015), the ensuing demand placed on hip abductor 

muscle function (Curtze et al., 2010; Sawers et al., 2015), and its psy
chometric properties among unilateral LLP users (Sawers et al., 2020; 
Sawers and Hafner, 2018b). 

Three anthropometric variables recognized for their potential influ
ence on muscle strength were tested for their association with peak 
isometric hip extension and abduction torque: body mass (BM), thigh 
length (TL), and the product of body mass and thigh length (BM x TL) 
(Jaric, 2002; Jaric et al., 2005). Transfemoral amputation disrupts the 
relationship between height and muscle moment arm length in the re
sidual limb because the length of the residual limb (i.e., thigh) is no 
longer proportional to body height. Thigh length (or residual limb 
length) was therefore selected in lieu of height as a proxy for muscle 
moment arm length. Residual limb thigh length in transfemoral pros
thesis users was measured as the distance from the ischium to the distal 
end of the residuum. 

2.3.2. Hip torque data collection 
Maximum voluntary isometric hip extension and abduction torques 

were measured using a motor-driven dynamometer (Biodex System 4 
Pro, Biodex Medical Systems, Inc., Shirley, NY) (Drouin et al., 2004). 
When testing hip extension or abduction, participants were positioned in 
a supine position (Meyer et al., 2013; Rutkowska-Kucharska et al., 2018) 
with the hip flexed to 20 degrees (Powers et al., 1996), or a side-lying 
position (Lloyd et al., 2010; Meyer et al., 2013; Nadollek et al., 2002; 
Widler et al., 2009), with the hip abducted to 10 degrees (Meyer et al., 
2013; Powers et al., 1996), respectively. A supine rather than prone 
position was chosen for the assessment of hip extension for participant 
comfort, and for consistency with previous research (Hewson et al., 
2020). The order of testing (i.e., leg and muscle group) was randomized, 
and the prosthesis was removed when testing the residual limb (Rut
kowska-Kucharska et al., 2018; Ryser et al., 1988). After three- 
submaximal practice trials (Broekmans et al., 2013), participants 
completed 15 five-second maximum voluntary effort trials with 10 s rest 
between each trial. Participants were instructed to generate their 
maximum isometric force as quickly as they could, and to hold that 
maximum force until told to relax. The analog signal from the dyna
mometer was sampled at 1000 Hz, starting just before the verbal “go” 
command was given. Verbal encouragement was provided throughout 
the 5-s contraction. Five-minute rest periods were enforced between 
testing positions. 

2.4. Data processing and analysis 

2.4.1. Hip torque data processing 
The maximum voluntary isometric torque for each muscle group and 

leg was derived from the digitized analog signal (NI USB-6341, National 
Instruments, Austin, TX), adjusted for the effects of gravity, and 
smoothed using a low-pass Svetsky-Golay filter. Peak torque was 
computed as the maximum torque recorded between signal onset and 
offset across all 15 trials. All processing and analysis steps were per
formed using custom MATLAB (MathWorks, Natick, MA) routines. 

2.4.2. Normalization procedure 
Allometric scaling (Jaric, 2002; Nevill et al., 2005; Owings et al., 

2002; Vanderburgh et al., 1995) was used to determine if maximum 
voluntary isometric hip torque needed to be adjusted for the influence of 
anthropometric variables, and whether any needed adjustments were 
effective in returning a measure of hip torque that was independent of 
anthropometric variables in unilateral LLP users. Non-normalized hip 
torque (i.e., muscle strength) (S) was modeled as a function of a con
founding anthropometric scaling variable (X), by the power function: 

S = Sn(X)β (1) 
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where (Sn) is normalized hip strength (i.e., peak torque), and (β) is the 
scaling exponent (Jaric, 2002; Kleiber, 1950; Nevill et al., 1992; Nevill 
et al., 2005). Re-writing Eq. (1), normalized hip strength (Sn) can be 
represented as: 

Sn = S
/
(X)β (2) 

To determine the appropriate value for the scaling exponent (β) the 
power function (Eq. (1)) is linearized with a log-transformation, 
yielding: 

log (S) = log (Sn)+ β (log X) (3) 

As the equation of a straight line, the scaling exponent (β) represents 
the slope of that line. The value of the slope can be estimated by per
forming a standard linear regression with log (S) as the dependent 
variable, and log (X) as the independent variable. To determine whether 
the slope of the log-transformed regression is significantly greater than 
zero, and hip strength is significantly associated with the anthropo
metric variable in question, the 95% confidence interval (CI) of the slope 
is inspected to determine whether it includes the values zero or 1. 
Table 1 describes how to interpret the 95% CI of the slope for signifi
cance and if normalization is needed (i.e., if an association exists), as 
well as how normalization should be applied (Owings et al., 2002). 

2.4.3. Statistical analysis 
Departures from normality among continuous variables were eval

uated with Shapiro-Wilk tests (Shapiro and Wilk, 1965). Outliers were 
detected and removed if they exceeded a threshold of ±3.0 median 
absolute deviations (MAD) beyond the median (Leys et al., 2013). 
Measures of central tendency and dispersion, as well as frequency and 
proportion, were computed to describe the continuous and categorical 
characteristics of the study sample, respectively. As an initial assessment 
of whether normalization alters the interpretation of hip strength in 
unilateral LLP users, Spearman's rho coefficients were computed be
tween peak hip abduction torque and NBWT performance prior to and 
following normalization. Wilcoxon signed rank tests were also run to 
test for differences in peak hip extension torque between the residual 
and intact limbs before and after normalization. The level of significance 
for all tests was set to α ≤ 0.05. Normalization procedures and statistical 
analyses were performed using SPSS v.28 (Chicago, IL). 

3. Results 

Twenty-eight unilateral lower limb prosthesis (LLP) users partici
pated in the study. Age, body mass index (BMI), and NBWT scores were 
normally distributed (W ≥ 0.952, p ≥ .256). The remaining amputation, 
health, and mobility-related continuous variables were non-normally 
distributed (W ≤ 0.899, p ≤ .015). Body mass (BM) (mean ± 95% CI) 
(83.8 kg ±16.4), height (1.73 m ±0.07), and intact thigh length (TL) 
(0.42 m ±0.02) were normally distributed (W ≥ 0.949, p ≥ .216), while 
residual limb thigh length (median ± MAD) (0.36 m ±0.13) was non- 
normally distributed (W = 0.905, p = .021). 

Prior to log-transformation, and regardless of leg, non-normalized 
peak isometric hip extension and abduction torque values were non- 
normally distributed (W ≤ 0.770, p ≤ .001). Following their log- 
transformation non-normalized torque values were normally 

distributed (W ≥ 0.913, p ≥ .112). Torque values from two participants, 
one transtibial and one transfemoral, were found to exceed the outlier 
threshold of median ± 2.5 median absolute deviations (Leys et al., 2013) 
and were therefore excluded from subsequent analyses. Hence, 26 par
ticipants remained in the final analysis (Tables 2 and 3). 

Within the residual limb, the slope coefficients (i.e., scaling exponent 
(β)) of linearized regression equations between non-normalized peak 
isometric hip torques and body mass (BM), as well as thigh length (TL), 
were not significantly greater than zero (Table 4). In contrast, slopes of 
the linearized regression equations between residual limb hip torques 
and BM x TL were significantly greater than zero (Table 4). Within the 
intact limb, slope coefficients of linearized regression equations between 
non-normalized peak isometric hip torques and all anthropometric 
variables (i.e., BM, TL, and BM x TL) were significantly greater than zero 
(Table 4). 

After normalizing residual and intact limb peak hip extension and 
abduction torques by BM x TL, the slopes of the respective linearized 
regression equations were no longer significantly greater than zero (i.e., 
confidence intervals included 0 but not 1, no significant association) 
(Table 5). Similarly, after normalizing intact limb peak torques by body 
mass, the slopes of the linearized regression equations were no longer 
significantly greater than zero. In contrast, when intact hip extension 
and abduction torques were normalized by thigh length, the slopes of 
the linearized regression equations were indeterminant (i.e., confidence 
intervals included 0 and 1) (Table 5). 

Prior to normalization the correlation between intact limb hip 
abduction torque and balance performance (i.e., NBWT distance 
walked) was small and not statistically significant (rs = 0.316, p = .109). 
Once normalized by BM x TL intact limb hip abduction torque was 
moderately and significantly correlated with NBWT performance (rs =

0.513, p = .006). Differences in hip extension torque between the intact 
and residual limb were also affected by normalization. Initially, no 
significant difference was found between intact and residual limb hip 
extension torques (intact: 71.4 Nm, residual: 72.9 Nm; Z = − 0.102, p =
.918). However, once normalized by BM x TL the same between limb 
difference was statistically significant (intact: 8.39 (% BM X TL), resid
ual: 24.5 (% BM X TL); Z = − 4.60, p < .001). 

4. Discussion 

The objective of this pilot study was to determine the need for as well 
as effectiveness and impact of normalizing hip extension and abduction 
muscle strength, as estimated by peak isometric torque, in LLP users. 
Results suggest that hip extension and abduction strength are signifi
cantly and consistently associated with body mass x thigh length in 
unilateral LLP users, which when adjusted for, alters the interpretation 
of between limb differences in hip extension strength, as well as the 
relationship between hip abduction strength and balance ability. Except 
for amputation etiology and sex, participant characteristics (e.g., age, 
amputation level, PLUS-M T-scores,) were largely consistent with those 
reported in large national studies of LLP users (i.e., n = 146–1568) (Ehde 
et al., 2000; Hafner et al., 2016; Pezzin et al., 2000; Wurdeman et al., 
2018; Ziegler-Graham et al., 2008). The results of this pilot study may 
therefore generalize to the broader population of established unilateral 
non-dysvascular LLP users. 

Table 1 
Interpretation of the 95% confidence intervals (CI) accompanying the slope (β) of log-log regressions.  

95% CI Slope of log-log regression Association between strength and anthropometric variable Normalization 

includes zero, not 1 slope not significantly > zero no significant association not indicated 
includes 1, not zero slope significantly > zero significant linear association indicated; Sn = S/(X)1 

between zero and 1 slope significantly > zero significant non-linear association indicated; Sn = S/(X)β 

includes zero and 1 slope indeterminant association is indeterminant N/A  
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4.1. Is hip strength, as estimated by peak isometric torque, significantly 
associated with anthropometric variables in unilateral LLP users and 
therefore in need of normalization? 

Non-normalized peak isometric hip extension and abduction torques 
in the residual limb of unilateral LLP users were found to be significantly 
associated with body mass x thigh length (BM x TL), but not body mass 
(BM) or thigh length (TL) alone. In contrast, non-normalized peak 

isometric hip extension and abduction torques in the intact limb were 
significantly associated with all three anthropometric variables. Across 
residual and intact limbs, BM x TL was the only anthropometric variable 
that both hip extension and abduction strength were consistently 
dependent on, and for which adjustment was needed. The lack of a 
significant association between non-normalized hip torques and BM or 
TL in the residual limb may be due to amputation-related changes. In
creases in BM may not be accompanied by expected increases in fat-free 

Table 2 
Participant demographic, health, amputation, mobility, and balance-related characteristics.  

Demographics Health Amputation Balance and Mobility 

Age Sex CCI BMI Level Etiology Time Since 
Amputation (years) 

MFCL PLUS-M (T-score) Prosthetic Use  
(hrs/day) 

NBWT 
(/1.0) 

Mean 
(95% CI) 

Subjects (/26) Median 
(MAD) 

Mean 
(95% CI) 

Subjects (/26) Subjects 
(/26) 

Median 
(MAD) 

Subjects (/26) Mean 
(95% CI) 

Median 
(MAD) 

Mean 
(95% CI) 

53.7 
(47.7, 59.7) 

Male 
(n = 13) 
Female 

(n = 13) 

1.0 
(1.5) 

27.9 
(25.3, 30.5) 

Transtibial 
(n = 13) 

Transfemoral 
(n = 13) 

Non-dysvascular 
(n = 19) 

Dysvascular 
(n = 7) 

12.0 
(13.3) 

K2 (n = 12) 
K3 (n = 14) 

51.1 
(48.0, 54.2) 

14.0 
(2.97) 

0.44 
(0.35, 0.53) 

BMI: Body Mass Index; CCI: Charlson Co-morbidity Index; CI: Confidence Interval; MAD: Median Absolute Deviation; MFCL: Medicare Functional Classification Level 
(K-level); NBWT: Narrowing Beam Walking Test; PLUS-M: Prosthetic Limb Users Survey-Mobility. 

Table 3 
Non-normalized residual and intact limb peak isometric hip extension and abduction torques.   

Hip extensors Hip abductors  

Residual limb Intact limb Residual limb Intact limb 

Median (MAD) Median (MAD) Median (MAD) Median (MAD) 

Non-normalized peak torque (Nm) 72.9 (17.8) 71.4 (12.2) 81.4 (12.0) 74.3 (17.6) 

MAD: Median Absolute Deviation. 

Table 4 
The slopes (β-values) and accompanying 95% confidence intervals (CI) of linear regressions performed on the logarithm of non-normalized hip extensor and abductor 
maximum voluntary isometric peak torque and the logarithm of body mass (BM), thigh length (TL), or body mass x thigh length (BM x TL).   

Hip extensors Hip abductors  

Residual limb Intact limb Residual limb Intact limb 

β (95% CI [LB, UB]) β (95% CI [LB, UB]) β (95% CI [LB, UB]) β (95% CI [LB, UB]) 

Body mass (BM) 0.44 (− 0.08, 0.95)a 0.60 (0.22, 1.1)b 0.44 (− 0.10, 0.98)a 0.80 (0.29, 1.3)b 

Thigh length (TL) 0.31 (− 0.16, 0.77)a 2.9 (0.73 5.0)b 0.38 (− 0.10, 0.85)a 2.9 (0.38, 5.3)b 

BM x TL 0.33 (0.01, 0.64)c 0.61 (0.24, 0.97)c 0.35 (0.036, 0.67)c 0.73 (0.29, 1.2)b 

β: slope coefficient; BM: body mass; CI: confidence interval; LB: lower bound; TL: thigh length; UB: upper bound. 
a: no significant association between peak torque and anthropometric variable (CI includes 0 and not 1, p ≥ .05). 
b: significant linear association between peak torque and anthropometric variable (CI includes 1 or greater but not 0, p < .05). 
c: significant non-linear association between peak torque and anthropometric variable (CI between 0 and 1, p < .05). 

Table 5 
The slopes (β-values) and accompanying 95% confidence intervals (CI) of linear regressions performed on the logarithm of normalized hip extensor and abductor 
maximum voluntary isometric peak torque and the logarithm of body mass (BM), thigh length (TL), or body mass x thigh length (BM x TL).   

Hip extensors Hip abductions  

Residual limb Intact limb Residual limb Intact limb 

β (90% CI [LB, UB]) β (90% CI [LB, UB]) β (90% CI [LB, UB]) β (90% CI [LB, UB]) 

Body mass (BM) – − 0.36 (− 0.78, 0.10)a – − 0.20 (− 0.71, 0.32)a 

Thigh length (TL) – 1.9 (− 0.27, 4.0)c – 1.9 (− 0.63, 4.3)c 

BM x TL 0.00 (− 0.32, 0.32)a 0.00 (− 0.37, 0.37)a 0.00 (− 0.32, 0.32)a − 0.27 (− 0.71, 0.17)a 

β: slope coefficient; BM: body mass; CI: confidence interval; TL: thigh length LB: lower bound; TL: thigh length; UB: upper bound. 
a: no significant association between peak torque and anthropometric variable (CI includes 0 and not 1, p ≥ .05). 
b: significant linear association between peak torque and anthropometric variable (CI includes 1 or greater but not 0, p < .05). 
c: association between peak torque and anthropometric variable is indeterminant (CI includes both 0 and 1). 
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muscle mass within the residual limb. While strength has been corre
lated with muscle physiological cross-sectional area (Maughan et al., 
1983), increased BM does not necessarily lead to increased fat-free 
muscle mass and force generating capacity (Folland et al., 2008). 
Similarly, amputation may alter muscle moment arm length in the re
sidual limb. To date, BM has been the only anthropometric variable with 
which dynamometer-driven measures of hip torque in LLP users have 
been normalized (Crozara et al., 2019; Heitzmann et al., 2020; Kowal 
and Rutkowska-Kucharska, 2014; Lloyd et al., 2010; Rutkowska- 
Kucharska et al., 2018; Sibley et al., 2021; Slater et al., 2021). Our un
derstanding of hip muscle strength in unilateral LLP users, and its 
relationship to physical function, is therefore currently limited to mea
sures of hip torque that remain dependent on anthropometric variables. 

4.2. Is normalization effective, and does it alter the interpretation of hip 
extension and abduction strength in unilateral LLP users? 

Normalization of residual and intact limb peak isometric hip exten
sion and abduction torques by BM x TL was found to reduce significant 
associations and return measures of hip strength that were independent 
of the tested anthropometric variables. Among LLP users, adjusting for 
the influence of BM x TL on hip extension and abduction torques yields 
strength indices that are suitable for comparison between individuals 
and legs that differ in size. Importantly, normalization by BM x TL was 
found to alter the interpretation of hip strength in this pilot study. 
Specifically, normalization of intact limb hip abduction torque by BM x 
TL led to the identification of a larger and significant correlation be
tween hip abduction peak torque (i.e., muscle strength) and balance 
ability, as estimated by NBWT performance, that would otherwise have 
been overlooked in the absence of normalization. While several other 
factors may contribute to balance ability (e.g., socket fit, propriocep
tion), these results suggest that a potentially important relationship 
between a modifiable factor, intact limb hip abduction strength, and fall 
risk as estimated by the NBWT (Sawers et al., 2020; Sawers and Hafner, 
2018b), would go unnoticed and untreated. Additionally, previous 
research, which either did not normalize hip torques or did so using 
body mass alone, has suggested that hip extension strength in unilateral 
LLP users is either lower in the residual versus intact limb (James, 1973; 
Rutkowska-Kucharska et al., 2018), or not significantly different 
(Bäcklund et al., 1968; Powers et al., 1996). In contrast, the current 
results suggest that hip extension strength, once normalized to BM x TL, 
is significantly greater in the residual than the intact limb of unilateral 
LLP users. While limited to two specific examples, these data serve to 
initially illustrate how a failure to normalize hip strength data in LLP 
users to appropriate anthropometric variables may confound results, 
alter their interpretation, and ultimately influence the treatments and 
research questions clinicians and scientists pursue. 

4.3. Future research and limitations 

Future research with a larger sample is needed to confirm the current 
results, conduct important sub-analyses (e.g., level of amputation, eti
ology) (Bazett-Jones et al., 2011; Powers et al., 1996), and compare 
theoretical and empirical scaling exponents for LLP users (Wren and 
Engsberg, 2007). A comprehensive evaluation of additional aspects of 
muscle function (e.g., power and endurance), muscle groups (e.g., knee 
extensors), and muscle actions (e.g., eccentric) is required to determine 
whether the current results apply to the broader construct of muscle 
function in LLP users. Consideration for alternative normalization 
models that do not presume geometric similarity (e.g., a gamma function 
model) (Nevill et al., 2004; Nevill and Holder, 1999) and additional 
anthropometric scaling variables (e.g., fat free muscle mass, muscle 
thickness, hip girth) (Jaric, 2002) are necessary to identify and adopt the 
most physiologically-relevant and effective normalization procedure(s). 
While motor-driven dynamometers are regularly used to evaluate 
muscle strength in LLP users (Hewson et al., 2020), and have been 

shown to possess degrees of validity and reliability in other clinical 
populations (Drouin et al., 2004; Jørgensen et al., 2017; Kristensen et al., 
2017; Lienhard et al., 2013), their psychometric properties in LLP users 
remain to be confirmed. Establishing key psychometric indices for 
motor-driven dynamometers, as well as other means of evaluating 
muscle function in LLP users is necessary to develop a gold-standard 
against which clinically-feasible assessments can be compared, and 
changes over time evaluated. 

5. Conclusion 

In this pilot study we demonstrate that hip extension and abduction 
strength in unilateral LLP users, as estimated by maximum voluntary 
isometric peak torque, are significantly and consistently associated with 
BM x TL. The dependence on BM x TL can be minimized via normali
zation to create measures of hip strength amenable to comparisons be
tween individuals and legs that differ in size. In the absence of such 
procedures, important relationships between hip strength and balance 
ability, as well as critical between limb differences may go unnoticed. 
This pilot study suggests that until further research is conducted to 
confirm and expand upon the present findings, researchers should 
consider the potential confounding effects of anthropometric variables 
on strength data among unilateral LLP users and adjust for any signifi
cant associations accordingly. The findings of this pilot study suggest 
that non-normalized peak torque strength data in LLP users should be 
interpreted cautiously, and that the application of validated normali
zation procedures may challenge long-held beliefs regarding patterns of 
muscle weakness and their association with walking or balance ability in 
LLP users. 
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